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Artificial Intelligence for Simulation
an R&D collaboration program
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Atos AI in HPC, Al for HPC and AI enhanced HPC

AI-driven Integrating ML in

HPC/AI Converged
optimization tool Science application
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Programming
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v Reduce TCO for HPC and Al v Boost performance with Al v Improve simulation with data-
driven approach

v' Data science platform for HPC & v Learn from your production
Large-Scale Al v' Atos data science teams
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AI4Simulation: an R&D collaboration program

The Ai4Sim collaboration program aims at co-designhing and co-developing
simulation solutions with industrial and academic partners to demonstrate how

artificial intelligence can make physical modeling more accurate and efficient
and how they enable addressing new simulation challenges.
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Ai4Simulation: 3 main development tracks

Model
Architecture

v' Exploring DL technics to surrogate
Physical Models (MLP, CNN)

v' Unstructured grids, Mesh Free
approach, Physics-informed NN
models (PINN, HNN), etc.

Coupling
Al & Simulation

Advanced data coupling between
ML inference & numerical solvers

AI/HPC workflow orchestration for
continuous improvement.

Online/Meta
Learning Strategy

Hyperparameters & topologies
optimization (AutoML)
Automatic data refinement for
surrogate modeling & simulation
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An application to flight physics




An application to flight physics
Body forces modeling using Machine Learning

» First implementation described in Lopez de Vega et al, Global Power and Propulsion Society, 2018
- Validate the CFD+AI approach but needed improvements to reach full potential
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https://oatao.univ-toulouse.fr/20880/

Deep learning approach to surrogate Physical Models
AI-Augmented Workflows

(D

Data Generation

4
~ Online learning

feedback

Surrogate Neural

Network (NN) Model

N h
N &
A 4

Model design & ML training ‘
Y

Surrogate

—

CFD
simulation

Coupling simulation iterative process with trained NN
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The use of space correlation




Use of space correlation
a ConvNets approach with Unet

» Goal: make use of spatial correlations in Al-based body force models

» Unet architectures adapted for performing a regression task
» Process chain involves data interpolation, training (/instantiation) & re-interpolation

CFD data Transformation & Training (+instantiation) Re-interp. Data
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Use of space correlation
a ConvNets approach with Unet

» Unet architecture has been adapted for regression tasks
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Use of space correlation

a ConvNets approach with Unet

» Application to fn modeling in rotor blade
» Topology: 3x3 filters, 3 layers, [64, 128, 256] features, R2 > 0.99
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A collection of NN models for

ED scientific ML




Multilayer Perceptron (MLP)
Baseline for deep learning methods

» No use of spatial structures / correlations

» Deployed in multiple Ai4Sim use-cases:
* Machine learning body forces (flight physics)

2D CFD simulations (e.g. vorticity-streamfunction)
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U-Net
Convolutional contracting networks

» Network adapted for spatial data (2D,
3D) with convolution kernels.

input

- output
|mat(ﬂz > *1*1*| segmentation

» Contracting to a /latent space for 1. 11797 ™
essential information encoding, eg. HEE -

physical dynamics... L

» Successfully applied to: _ ‘H M'H

* Biomedical image segmentation . 1
(Ronneberger et al.) |» »| [Pellsl  =convaa reww

 Machine learning body forces (flight B S o o b copy and crop
physics) e e e s

 Turbulent sub-grid scale combustion e m— = conv 1x1

(Lapeyre et al.)

O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. May 2015.
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Hamiltonian Neural Network (HNN)
Physics-informed deep learning

» Networks informed by physics, learning an Hamiltonian { ;

= 448

_dH
dg

» Soft constraint: physical constraint hardcoded in the loss function

3?{9 H 3?{9
argmm
d
» Successfully applied to: |
 Learning the streamfunction
(Ai4Sim R&D) from 2D CFD )
Dynamic Numeric Simulation 37|
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S. Greydanus, M. Dzamba, J. Yosinski. Hamiltonian Neural Networks. Sep 2019.
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Convolutional Auto-Encoders (CAE)
Physical constraints in a latent space

» Encoding in a latent space

* Soft constraints: physical constraints in the latent space (e.g. VAE, CAE-HNN)
 Hard constraints: physical constraints as topology (e.g. Conv kernel as numerical stencils)

\

jf Encoder
e V CNN

\

L

Compressed
Latent Space

» Currently being explored/benchmarked

T. Mohan, N. Lubbers, D. Livescu, M. Chertkov. Embedding hard physical constraints in neural network coarse-graining of 3D

turbulence. Feb 2020.
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Integration with the SU2
open-source solver




Integration with SU2 open-source solver

Overview

SU2 is an open source Solver for
Computational Fluid Dynamics (CFD)
with @ modular architecture

A 4
Data Generation:
« Mixing plane simulation chain.

SUZ

code

y

Interfacing external ML model:
« Body force integration

20 | 19.11.2020 | Atos BDS R&D AI4Sim: Artificial Intelligence for Simulation Ams



Integration with SU2 open-source solver
Control & Coupling

e, Sue

e Ai4Sim Library> code

Data extraction: coordinates,

control

Al model physical variables SU2 Solver
(MLP, Unet) 5 C++ Kernel
<=

Python -

g simulation =

e

S

(a8

Data presciption: body forces

Execution control: advance
iteration, update internals....
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Integration with SU2 open-source solver
Basic Validation

FluidSolver.ResetConvergence()
while Iter = 1008:
FluidSolver.Preprocess(Iter)
#set the body forces
for iNode in range(FluidSolver.GetTotalNumberNodes()): ’
¥xCoord = FluidSolver.GetNodeCoordX{iNode)
yCoord = FluidSolver.GetNodeCoordY({iNode)
if xBFMin = xCoord and xCoord < xBFMax and xBFMin = yCoord and yCoord = xBFMax:

#Collect the flow variables g
consVar = FluidSolver.GetSolution({iNode, iVar) =0
#Some processing to implement here

#Apply body forces in the CFD solver -1

FluidSolver.SetVariable BodyForce(iNode, iVar, 1€0.1)
FluidSolver.Runi()
FluidSolver.Update()
Iter 4= 1
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Learning from PDEs: solving

E\/) equations with PINN




Learning from PDEs: solving equations with PINN
Pros and cons

Classical Methods Al-Augmented

) Once trained, fast accurate

@Good results on mesh )
computations

9 Resolution limited to / <
mesh topology , 4

9 Slow computations &9 Difficult to tune manually

@/ Mesh-free resolution
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Learning from PDEs: solving equations with PINN
Why PINN ?

» Traditional Supervised ML
— Known: input data (x, y) (x, ?) §/ — LOSS(?, 9)
» Physics-Based Supervised ML

— Known: X, Partial Derivative Equation
(PDE), Boundary Conditions (BC)

Training

y is unknown!

» Physics-Informed Neural Network

— Known: x, Partial Derivative Equation
(PDE), Boundary Conditions (BC) |

X ——

\ v
(Multi) Loss = PDE residuals + BC residuals g, NN /u - Loss(x, u, Vu)

M. Raissi et al (2017). Physics informed deep learning (part i):

Data-driven solutions of nonlinear partial differential equations. Training
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Learning from PDEs: solving equations with PINN
Implementation of Residual-based Adaptative Refinement (RAR)

>

>

]

The idea behind adaptive refinement in the context of PINN is to improve the

network training by providing more data in the regions were the residuals are
higher

: i ot ox
Application on Burgers use-case:

High residuals / i \

COutput values: u
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x

PDE residuals

Without RAR
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Learning from PDEs: solving equations with PINN
Implementation of Residual-based Adaptative Refinement (RAR)

PDE residuals classes

» Classical RAR = /'
—  We improve the training data set by adding a few selected points **
with high residuals values 150

i
100

» Density-based Adaptive Refinement (DAR)

50

— A density map is built from the residual distribution on a set of l
points (random sampling or mesh) o R — —
— A new training set is generated on the base of this density map Bin #2, 409 samples
o . .!.,.‘
» Density-based Adaptive Refinement with Bins (DARB) ; f-:“
— Different classes are defined on the base of a histogram of o ,:",‘:!
residuals iy g
— Application of the previous DAR to select points from each class 02 R ‘:é\

1
0.0 0z 04 0.6 0a 10
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O The Ai4Sim Library




Ai4Sim Python library é
From research to product "

One Ai4Sim objective is the maturation and integration of research topics until the highest TRL

B e o
AIASIm (@) Unit testing coverage (>85%)
™ Shared BDS R&D Al4Sim
Integration {2} PEP8-compliency, SonarQube, etc.
Research NN
shared BDS R&D Al4Sim #II" TensorFlow 2.x Keras Models

@ ?\.M“"‘j , Continous Integration & Deployment

‘*‘:.a JFrog

Research topics under productization:

— Physics-Informed Neural Networks (PINN, HNN) — Online/Meta Learning
— Latent Space & Physical Constraints — Simulation Control & Coupling Workflow
— Hyper-optimization & NN Architecture Search
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Artificial Intelligence for Simulation

an R&D collaboration program

Thank you !
Any Question ?

For more information on Al4Sim please contact:

Gaél Goret, PhD - Group Leader
\\ +33 476 298 128 [ gael.goret@atos.net



